SYNTHESIS OF TRITIUM-LABELLED IMIPRAMINE AND DESIPRAMINE WITH HIGH SPECIFIC ACTIVITIES

L.A. YAKOVLEVA, Ju.L. KAMINSKI, L.P. SOSNOVA, B.K. KUDELIN V.G.Khlopin Radium Institute, St.-Petersburg, 194021, Russia

SUMMARY

[G-3H]imipramine and [G-3H]desipramine with specific activities 110-160 and 80-100 kCi/mol, respectively were synthesized by high temperature solid-phase catalytic isotope exchange with gaseous tritium.

Key words: tritiated imipramine, tritiated desipramine

INTRODUCTION

Imipramine (I) and desipramine (II) are widely used in

practical medicine as powerful antidepressants. Their tritiumlabelled analogs are used as radioligands in serotonin receptor investigations and in new potential antidepressants screening [1]. Tritiated imipramine and desipramine with high specific activities (As) are needed for these purposes.

It is known that the liquid-phase catalytic dehalogenation of 3-chloroimipramine on Pd/C in dioxan is accompanied by isotope exchange of benzyl-type hydrogen atoms in positions 10 and 11. As a result up to 20% of the incorporated activity appears in these two positions [2].

[3H]Imipramine with As 1.5 Ci/mol was obtained by liquid-phase catalytic exchange with gaseous tritium on PtO2 [3]. An

660 L.A. Yakovleva et al.

isotope exchange with tritium-gas on PdO in methanol gave labelled imipramine and desipramine with As 14.9 and 44.9 kCi/mol, respectively [4]. In dioxan-water mixture (9:1 v/v) by a liquid-phase isotope exchange with 3H2 on 10% PdO/BaSO4 labelled desipramine was obtained with As 67 kCi/mol [5]. This product was then converted into [3H]imipramine with As 78 kCi/mol by reductive methylation with formaldehyde and tritium in methanol using 10% PdO/BaSO4 as catalyst.

The object of the present work was to develop a simple one-stage method of tritium incorporation into imipramine and desipramine so as to obtain products with high As

METHODS

The substrate (10 μ mol) in CH3OH (1ml) was added to 100-200 mg of catalyst. The solvent was evaporated off and the resulting dry mixture of the catalyst and substrate exposed to a tritium atmosphere at a temperature of between 50 °C and 150 °C.

HPLC on columns filled with Lichrosorb RP-18 (Merck) was used for isolation of the labelled compounds. A mixture of acetone-isopropanol-water (5:4:1 v/v), containing 0.1% of triethylamine was used as eluent for imipramine isolation, whilst an ethanol-water mixture (95:5 v/v) with addition of 0.15% of triethylamine was used for desipramine.

RESULTS AND DISCUSSION

To incorporate tritium label into imipramine and desipramine we used the solid-phase catalytic isotope exchange method which has been shown to be very efficient for various classes of organic compounds [6-8]. In experiments with solid-phase isotope exchange of imipramine we changed the nature of catalysts, the substrate-catalyst mole ratio, the reaction temperature, the duration of the

run and the pressure of the protium-tritium mixture. 5% Pd/BaSO4, 5% PdO/Al2O3 and 2% PdO/SiO2 were initially used as catalysts.

The experiments have shown that under typical conditions (gas pressure 1 atm, temperature 100-150 °C) a great deal of tritium enters the imipramine molecule not by isotope exchange but by hydrogenation of the benzene rings leading to destruction of the molecule. This was reflected in a sharp fall (up to zero) of the UV-absorption of the reaction mixture and in the appearance of more than 6 peaks of unidentified compounds in the radiochromatograms.

A series of experiments using 5% Pd/BaSO4 and at a gas pressure of 1 atm was carried out in which the temperature was decreased from 100 to 50 °C. In this case an increase of [3H]imipramine content in the reaction mixture and a decrease of its As were observed simultaneously.

Rhodium catalysts turned out to be more selective than palladium ones. When the reaction was carried out on 5% Rh/Al2O3 at 100-110 °C over 1 h, the tritiated imipramine content in the reaction mixture was near 40%. Under milder conditions (using 0.5% Rh/Al2O3) an even better incorpopation was achieved (up to 70%).

The optimum conditions were found to be: 10 μ mol of imipramine and 100 mg of 0.5% Rh/Al203 catalyst. The mixture, after drying, was exposed to a tritium atmosphere at 100-110 °C and 0.5 atm for 1 h. Similar conditions were used for designamine.

Isolation of the labelled compounds I and II was performed by HPLC. Both for imipramine and for desipramine fractionation of the labelled substance according to the extent of substitution was observed on the chromatographic column. For [3H]imipramine the fractions were collected with As 110-160 kCi/mol and for [3H]desipramine - with As 80-100 kCi/mol. The radiochemical purity of all the fractions was more than 95%.

L.A. Yakovleva et al. 662

Fractions of both labelled compounds with higher As. isolated by HPLC were less stable during storage.

3H-NMB spectra of the tritium-labelled compounds I and II described in literature show that tritium is concentrated in the aromatic rings and in positions 10,11 [9]. A 3H-NMR spectrum obtained by us of the labelled desipramine shows that the tritium content in the benzene rings (26%) and benzyl groups (22%) is less than in the methyl and methylene groups adjacent to the exocyclic nitrogen atom (52%).

The investigation has shown that solid-phase isotope exchange is a promising method for the synthesis of tritium-labelled polycyclic nitrogen-containing antidepressants.

REFERENCES

- Mashkovskii M.D.- Pharmacology of antidepressants. (Russ.), Medicina, Moscow 1983
- 2. Evans E.A.- J.Radioanal.Chem. 64: 9 (1981)
- 3. Telc A., Brumfelter B., Gosztonyi T.- J.Labell.Comps. Radiopharm. <u>8</u>: 13 (1972)
- 4. Buchman O., Pri-Bar J.- J.Labell.Comps.Radiopharm. 14: 263 (1978)
- 5. Fuksova K., Krulik P., Pichova D., Picha J.- Radioisotopy 29: 178 (1988)
- Zolotarev Ju.A., Kozik V.S., Zaitsev D.A., Dorokhova E.M., Myasoedov N.F.- Dokl. Akad. Nauk SSSR. 308: 1146 (1989)
 Natochin Ju.V., Parnova R.G., Firsov D.L., Shakhmatova E.I., Kaminski Ju.L., Akulov G.P., Patokina N.A.- Fiziologicheskii Zurnal (USSR) 75: 1766 (1989)
 Akulov G.P., Snetkova E.V., Kaminski Ju.L., Kudelin B.K., Efimova V.L.- Radiokhimiya (USSR) 33: 74 (1991)
 Evans E.A., Warrell D.C., Elvidge J.A., Jones J.R.- Handbook of Tritium NMR Spectroscopy and Applications. Wiley, Chichester, 131 (1985)
- 131 (1985)

ACKNOWLEDGEMENTS

We are grateful to Dr. S.G.Rosenberg for obtaining the ³H-NMR **sp**ectra.